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§1. Introduction




Where we are now

k algebraically closed field, G reductive group over k.

The Satake category Satg is the category of L G-equivariant

Gg—perverse sheaves on the affine Grassmannian
Gr=LG/LTG.

The Satake category is a semi-simple abelian category and

admits a symmetric monoidal tensor product .

There is a symmetric monoidal functor H*: Satg — Vec
given by taking the sum of all hypercohomology groups.



Goals for this talk

e Identify Satg with Rep(GY), where GV is the Langlands dual
group. This is the geometric Satake equivalence.

e Explain how this categorifies the classical Satake isomorphism.



§2. The Langlands dual group




Root systems

Definition

A root system is a pair (V,®) where V is a finite dimensional
real vector space equipped with a positive definite inner product
(,) and @ is a finite subset of V such that:

e ® spans V and does not contain 0.

e For a, 3 € ®, the number 2§Z§; is an integer.

(,8)

(a,0)

e For a, 5 € P, the element § — 2 « belongs to @.

We say the root system is reduced if no scalar multiple of a root
(other than £1) is a root.



Root systems and Lie algebras

e Let g be a complex semisimple Lie algebra.

e Let b be a Cartan subalgebra.

e Have a decomposition g = b ® @ c¢ o Where @ is a finite
subset of h* and g, is the a-eigenspace of ) acting on g.

e The Killing form induces a non-degenerate symmetric bilinear
form on b (and thus h*).

e Get root system by taking V' to be the R-subspace of h*
spanned by ®.

e The root system determines g up to isomorphism, and every
(reduced) root system comes from some g.



An example

Let g be the complex semisimple Lie algbera sl,. This has for a
basis elements X, Y, and H, and brackets

[H.X] =2X, [H,Y]=-2Y, [X,Y]=H.

Can take h to be the span of H. Identifying h* with C, we have
o ={2,-2}.



Root data

Definition

A root datum consists of data (X®, ®, X,, ®) where:

e X° and X, are free abelian groups of finite rank equipped with
a perfect pairing (,): X*® Xe — Z.

e ® is a finite subset of X®, ®V is a finite subset of X,, and
there is a given bijection ® — ®V denoted a — .

e For a € & we have (a,a") =2.

e For a € ®, the map x — x — (x, ")« carries ® into itself,
and the dual map carries ®V into itself.

Elements of ® are called roots, and elements of ®V coroots.

Given a root datum, get a root system by taking V = X°®* ® R.



Root data and algebraic groups

e Let G be a connected reductive algebraic group over an
algebraically closed field with maximal torus T.

e Define X* = Hom(T,G,,) and X = Hom(G,, T). We call
X*® the weight lattice and X, the coweight lattice.

e Define @ to be the set of non-zero weights appearing in the T
action on Lie(G).

e For each root «, there is a unique coweight aV: G, — T
satisfying some conditions (one being a(a"(t)) = t?). Take
" to be the set of these aV’s.

e This defines a root datum, which determines G up to
isomorphism. Every (reduced) root datum comes in this way.



Example 1

Take G = SL(2) and T to be the diagonal torus.
Identify X*® and X, with Z.

Have & = {£2}.

This forces ¥ = {+1}.

Note that (®) has index 2 in X*.



Example 2

e Now take G’ = PSL(2) and T’ to be the diagonal torus.
e The surjection G — G’ identifies X*(G’) with 2Z C X*(G).

e Since this surjection identifies Lie algebras (char. # 2), it
identifies roots. Thus ®(G’) = {£2} C 2Z.

e Similarly, V(G') = {£1} C 3Z.
e Note that (®(G’)) = X*(G’). Thus the root datum for G’ is
not isomorphic to the one for G.



Some properties of the root datum

One can easily read off some properties of G from its root datum:

e G is a torus if and only if ® = ().

e G is semisimple < (®) is a finite index in X*°.
o m1(G) = X,/ (®V).

e Hom(Z(G),Gn) = X* /(D).

(For last two points, assume characteristic is 0 or large.)



The dual group

Let G be a connected reductive group over an algebraically closed
field k. Then G is classified by a root datum

(X.7 ¢7 X.’ q>v)

We define the dual group GV to be the unique (up to
isomorphism) connected reductive group with root datum

(Xe, @Y, X®, ®).

One can define GV over any field; we'll be interested in taking GV
over Q.



Examples of dual groups

G GY
GL(n) GL(n)
SL(n) PSL(n)

SO(2n+1) Sp(2n)
SO(2n) SO(2n)

Spin(2n)  SO(2n)/{%1}



§3. Tannakian duality




Rigid tensor categories

Let k be a field and let C be a k-linear symmetric tensor category

with unit object 1.

We say that an object X is dualizable if there exists an object XV
and a map X ® XV — 1 such that for any other object T, the
natural map

Hom(T,X") — Hom(T ® X, 1)

is an isomorphism.

Definition
We say that € is rigid if all objects admit a dual.



e Let G be an affine group scheme over k. Then the category
Rep(G) of finite dimensional representations of G is a rigid
tensor category. (Here “representation” means “comodule
over k[G].") This is the motivating example.

e The Satake category Satg (as we'll see).
e The category of pure Hodge structures.

e The category of pure motives over a field (conjecturally).



Fiber functors

Let C be a k-linear rigid tensor category.

Definition
A fiber functor on C is a faithful exact k-linear tensor functor
w: € — Vec.

Given a fiber functor w, we define a functor Aut(w) on k-algebras
by associating to a k-algebra R the group of automorphisms of the
tensor functor w: € ®,x R — Modg.



Fiber functors: motivation

Suppose € = Rep(G) for an affine group scheme G/k. We then
have a natural fiber functor w: Rep(G) — Vec, namely, the
forgetful functor.

Given any V € Rep(G) and any element g € G(R), we have a
given map g: V® R — V ® R. This defines a map
i: G — Aut(w) of group-valued functors.

Theorem (Tannaka reconstruction)

The map i is an isomorphism.

This theorems shows how to reconstruct G from (C,w).



The main theorem

Theorem
Let C be a k-linear rigid tensor category with End(1) = k, and let
w be a fiber functor on €. Then:

(a) The functor Aut(w) is represented by an affine group scheme
G, and
(b) The natural functor C — Rep(G) is an equivalence of tensor

categories.



Relating G and Rep(G)

Given (C,w) as in the previous slide, we would like to translate
information about € to information about the group G. By the
theorem, it suffices to consider € = Rep(G).

e G is finite over k if and only if there is some X € Rep(G) such
that every representation is a subquotient of X®” for some n.

e G is of finite type over k if and only if there is some
X € Rep(G) such that every representation is a subquotient
of a finite sum of representations of the form X®".



Relating G and Rep(G) (cont)

In what follows, we assume k has characteristic 0 and G is of finite

type over k.

e G is disconnected if and only if there exists a non-trivial
representation X such that the subcategory of Rep(G)
spanned by subquotients of X®" is stable under ®. (ldea:
take X to be regular representation of my(G).)

e Assume G is connected. Then G is reductive if and only if

Rep(G) is semisimple.



64. Geometric Satake (part 1)




e Fix an algebraically closed field k and a reductive group G/k.

e Recall that the Satake category Sat¢ is the category of
L* G-equivariant perverse Q-sheaves on Gr = LG/L*G.

e We let x be the convolution product on Satg.

e For a dominant coweight y, let Gr,, be the L™ G-orbit of t#,
and Gre,, its closure. Let IC, be the IC sheaf of Gr,,.

e The category Satg is semisimple, and its simple objects are
the IC,,.



A lemma on intersection cohomology

Lemma
Let X be an irreducible projective variety of dimension n and let
H=&®>o H/(X,ICx). Then dim(H) > 1+ n.

Proof

e Let f: X — P" be a generically finite map.

e By the decomposition theorem, £, (ICx) is a direct sum of
shifts simple perverse sheaves.

e One of the summands is ICpn (on appropriate open subsets
we get the constant Q-sheaf as a summand).

e We thus see that B, H/(P",ICps) is a summand of H, and
this has dimension n+ 1. (Note that ICp- is a shift of a

constant sheaf since P” is smooth.)



Zero dimensional orbits

Let i be a dominant coweight. The following are equivalent:

(a) w is central.

(b) t* normalizes L™ G inside of LG.
(c) t"is fixed by LT G.

(d) G

(e) H

@

r, is zero-dimensional.

*(IC,) is one-dimensional.

If © and A are central dominant coweights then a simple
computation shows that IC,, « ICy = IC,; . (We'll also deduce
this from a more general result below.)



Sat¢ as a rigid tensor category

Proposition

Satg is a rigid tensor category and H* is a fiber functor.

Proof

e We know that Satg is a symmetric tensor category and that
H* is a tensor functor.

e H* is automatically exact since Satg is semisimple.
e By the lemma, H*(IC,) is non-zero. Since Satg is
semisimple, this implies that H* is faithful.

e To show Satg is rigid, it suffices (by Deligne-Milne) to show
that if H*(IC,) is one-dimensional then IC,, is invertible. If
H*(IC,) is one-dimensional then (i is central, and
IC, x1C_, = 1Co = 1 (by previous slide).



Sat¢ as a rigid tensor category (cont)

Applying the main theorem of Tannakian duality, we find:

Corollary

There is an affine group scheme I'/Qy such that Satg is
equivalent to Rep(T).

This equivalence is one of Qy-linear symmetric tensor categories,
and respects the fiber functors.

To prove the geometric Satake equivalence, we now simply need to
identify ' as the Langlands dual of G.



A lemma on convolutions

Lemma
Let \ and ji be dominant coweights. Then 1Cy x1C,, contains
IC)\4, as a summand.

Proof

e Consider the diagram

Grx Gr<t— LG x Gr—1-1LG x“"¢ Gr—™- Gr

e Note that LG x1"¢ Gr = GrXGr is the convolution
Grassmannian.

o Let X = Gr<)xGr<, be the closure in GrXGr of the set of
points of the form (gt*, ht*) with g, h € LT G.



A lemma on convolutions (cont)

Proof

e We have p~(Gr<y x Gr<y) = g~ H(X).
It follows that p*(ICy X IC,) = q*(ICx).
Thus, by definition, IC) xIC,, = m,(ICx).

Key observation: m maps X birationally to Gr<y,. (This is
related to how multiplication works in the Hecke algebra.)

It follows that ICy4,, is a summand of m,(ICx). (This uses a
decomposition theorem argument similar to the previous one.)

Remark

If X and p are central then H*(IC) x IC,) = H*(IC,) ® H*(IC,)
is one-dimensional, so ICy x IC,, = IC,, for some central v; by
the lemma, we must have v = X\ + p.



First properties of

Proposition
[" is of finite type, connected, and reductive.

Proof

e By the lemma, finitely many IC,'s generated Sat¢ as a tensor
category (e.g., those with 1 a fundamental coweight), which
implies that [ is finite type.

e The lemma also shows there is no tensor subcategory of Satg
containing direct sums of only finitely many IC,'s. Thus I is

connected.

e Finally, since Sat¢ is semisimple, [ is reductive.
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