The Geometric Satake Equivalence

Andrew Snowden Monday, June 22, 2020

University of Michigan

$\S1.$ Introduction

- k algebraically closed field, G reductive group over k.
- The Satake category Sat_G is the category of L^+G -equivariant $\overline{\mathbf{Q}}_{\ell}$ -perverse sheaves on the affine Grassmannian $\operatorname{Gr} = LG/L^+G$.
- The Satake category is a semi-simple abelian category and admits a symmetric monoidal tensor product *.
- There is a symmetric monoidal functor H^* : Sat_G \rightarrow Vec given by taking the sum of all hypercohomology groups.

- Identify Sat_G with Rep(G[∨]), where G[∨] is the Langlands dual group. This is the geometric Satake equivalence.
- Explain how this categorifies the classical Satake isomorphism.

$\S \textbf{2}.$ The Langlands dual group

Definition

A root system is a pair (V, Φ) where V is a finite dimensional real vector space equipped with a positive definite inner product (,) and Φ is a finite subset of V such that:

- Φ spans V and does not contain 0.
- For $\alpha, \beta \in \Phi$, the number $2\frac{(\alpha,\beta)}{(\alpha,\alpha)}$ is an integer.
- For $\alpha, \beta \in \Phi$, the element $\beta 2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\alpha$ belongs to Φ .

We say the root system is *reduced* if no scalar multiple of a root (other than ± 1) is a root.

- \bullet Let $\mathfrak g$ be a complex semisimple Lie algebra.
- Let \mathfrak{h} be a Cartan subalgebra.
- Have a decomposition g = h ⊕ ⊕_{α∈Φ} g_α where Φ is a finite subset of h^{*} and g_α is the α-eigenspace of h acting on g.
- The Killing form induces a non-degenerate symmetric bilinear form on h (and thus h^{*}).
- Get root system by taking V to be the R-subspace of h^{*} spanned by Φ.
- The root system determines g up to isomorphism, and every (reduced) root system comes from some g.

Let \mathfrak{g} be the complex semisimple Lie algebra \mathfrak{sl}_2 . This has for a basis elements X, Y, and H, and brackets

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H.$$

Can take \mathfrak{h} to be the span of H. Identifying \mathfrak{h}^* with \mathbf{C} , we have $\Phi = \{2, -2\}.$

Root data

Definition

A root datum consists of data $(X^{\bullet}, \Phi, X_{\bullet}, \Phi^{\vee})$ where:

- X[•] and X_• are free abelian groups of finite rank equipped with a perfect pairing (,): X[•] ⊗ X_• → Z.
- Φ is a finite subset of X[•], Φ[∨] is a finite subset of X_•, and there is a given bijection Φ → Φ[∨] denoted α ↦ α[∨].

 For α ∈ Φ, the map x → x − (x, α[∨])α carries Φ into itself, and the dual map carries Φ[∨] into itself.

Elements of Φ are called *roots*, and elements of Φ^{\vee} *coroots*.

Given a root datum, get a root system by taking $V = X^{\bullet} \otimes \mathbf{R}$.

- Let G be a connected reductive algebraic group over an algebraically closed field with maximal torus T.
- Define X[●] = Hom(T, G_m) and X_● = Hom(G_m, T). We call X[●] the weight lattice and X_● the coweight lattice.
- Define Φ to be the set of non-zero weights appearing in the T action on Lie(G).
- For each root α, there is a unique coweight α[∨]: G_m → T satisfying some conditions (one being α(α[∨](t)) = t²). Take Φ[∨] to be the set of these α[∨]'s.
- This defines a root datum, which determines G up to isomorphism. Every (reduced) root datum comes in this way.

- Take G = SL(2) and T to be the diagonal torus.
- Identify X^{\bullet} and X_{\bullet} with **Z**.
- Have $\Phi = \{\pm 2\}.$
- This forces $\Phi^{\vee}=\{\pm 1\}.$
- Note that $\langle \Phi \rangle$ has index 2 in X^{\bullet} .

- Now take G' = PSL(2) and T' to be the diagonal torus.
- The surjection $G \to G'$ identifies $X^{\bullet}(G')$ with $2\mathbf{Z} \subset X^{\bullet}(G)$.
- Since this surjection identifies Lie algebras (char. ≠ 2), it identifies roots. Thus Φ(G') = {±2} ⊂ 2Z.
- Similarly, $\Phi^{\vee}(G') = \{\pm 1\} \subset \frac{1}{2}\mathbf{Z}.$
- Note that ⟨Φ(G')⟩ = X[•](G'). Thus the root datum for G' is not isomorphic to the one for G.

One can easily read off some properties of G from its root datum:

- G is a torus if and only if $\Phi = \emptyset$.
- *G* is semisimple $\Leftrightarrow \langle \Phi \rangle$ is a finite index in X^{\bullet} .
- $\pi_1(G) = X_{\bullet}/\langle \Phi^{\vee} \rangle.$

• Hom
$$(Z(G), \mathbf{G}_m) = X^{\bullet}/\langle \Phi \rangle$$
.

(For last two points, assume characteristic is 0 or large.)

Let G be a connected reductive group over an algebraically closed field k. Then G is classified by a root datum

 $(X^{\bullet}, \Phi, X_{\bullet}, \Phi^{\vee})$

We define the *dual group* G^{\vee} to be the unique (up to isomorphism) connected reductive group with root datum

 $(X_{\bullet}, \Phi^{\vee}, X^{\bullet}, \Phi).$

One can define G^{\vee} over any field; we'll be interested in taking G^{\vee} over $\overline{\mathbb{Q}}_{\ell}$.

G	G^{\vee}
$\operatorname{GL}(n)$	$\operatorname{GL}(n)$
SL(n)	$\mathrm{PSL}(n)$
SO(2n+1)	Sp(2n)
SO(2n)	SO(2n)
Spin(2 <i>n</i>)	$SO(2n)/\{\pm 1\}$

\S **3. Tannakian duality**

Let k be a field and let \mathbb{C} be a k-linear symmetric tensor category with unit object **1**.

We say that an object X is *dualizable* if there exists an object X^{\vee} and a map $X \otimes X^{\vee} \to \mathbf{1}$ such that for any other object T, the natural map

$$\operatorname{Hom}(T, X^{\vee}) \to \operatorname{Hom}(T \otimes X, \mathbf{1})$$

is an isomorphism.

Definition

We say that \mathcal{C} is *rigid* if all objects admit a dual.

- Let G be an affine group scheme over k. Then the category Rep(G) of finite dimensional representations of G is a rigid tensor category. (Here "representation" means "comodule over k[G].") This is the motivating example.
- The Satake category Sat_G (as we'll see).
- The category of pure Hodge structures.
- The category of pure motives over a field (conjecturally).

Let \mathcal{C} be a *k*-linear rigid tensor category.

Definition

A *fiber functor* on \mathbb{C} is a faithful exact *k*-linear tensor functor $\omega \colon \mathbb{C} \to \text{Vec.}$

Given a fiber functor ω , we define a functor $\underline{Aut}(\omega)$ on *k*-algebras by associating to a *k*-algebra *R* the group of automorphisms of the tensor functor $\omega \colon \mathcal{C} \otimes_k R \to \text{Mod}_R$. Suppose $\mathcal{C} = \operatorname{Rep}(G)$ for an affine group scheme G/k. We then have a natural fiber functor $\omega \colon \operatorname{Rep}(G) \to \operatorname{Vec}$, namely, the forgetful functor.

Given any $V \in \operatorname{Rep}(G)$ and any element $g \in G(R)$, we have a given map $g: V \otimes R \to V \otimes R$. This defines a map $i: G \to \operatorname{Aut}(\omega)$ of group-valued functors.

Theorem (Tannaka reconstruction)

The map i is an isomorphism.

This theorems shows how to reconstruct *G* from (\mathcal{C}, ω) .

Theorem

Let C be a k-linear rigid tensor category with End(1) = k, and let ω be a fiber functor on C. Then:

- (a) The functor $\underline{Aut}(\omega)$ is represented by an affine group scheme *G*; and
- (b) The natural functor $\mathbb{C} \to \operatorname{Rep}(G)$ is an equivalence of tensor categories.

Given (\mathcal{C}, ω) as in the previous slide, we would like to translate information about \mathcal{C} to information about the group G. By the theorem, it suffices to consider $\mathcal{C} = \operatorname{Rep}(G)$.

- G is finite over k if and only if there is some X ∈ Rep(G) such that every representation is a subquotient of X^{⊕n} for some n.
- G is of finite type over k if and only if there is some
 X ∈ Rep(G) such that every representation is a subquotient
 of a finite sum of representations of the form X^{⊗n}.

In what follows, we assume k has characteristic 0 and G is of finite type over k.

- G is disconnected if and only if there exists a non-trivial representation X such that the subcategory of Rep(G) spanned by subquotients of X^{⊕n} is stable under ⊗. (Idea: take X to be regular representation of π₀(G).)
- Assume G is connected. Then G is reductive if and only if Rep(G) is semisimple.

§4. Geometric Satake (part 1)

- Fix an algebraically closed field k and a reductive group G/k.
- Recall that the Satake category Sat_G is the category of L^+G -equivariant perverse $\overline{\mathbb{Q}}_{\ell}$ -sheaves on $\operatorname{Gr} = \operatorname{L} G/\operatorname{L}^+ G$.
- We let \star be the convolution product on Sat_G .
- For a dominant coweight μ, let Gr_μ be the L⁺G-orbit of t^μ, and Gr_{≤μ} its closure. Let IC_μ be the IC sheaf of Gr_μ.
- The category Sat_G is semisimple, and its simple objects are the IC_µ.

A lemma on intersection cohomology

Lemma

Let X be an irreducible projective variety of dimension n and let $H = \bigoplus_{i \ge 0} \operatorname{H}^{i}(X, \operatorname{IC}_{X})$. Then dim $(H) \ge 1 + n$.

Proof

- Let $f: X \to \mathbf{P}^n$ be a generically finite map.
- By the decomposition theorem, $f_*(IC_X)$ is a direct sum of shifts simple perverse sheaves.
- One of the summands is IC_{Pⁿ} (on appropriate open subsets we get the constant Q_ℓ-sheaf as a summand).
- We thus see that ⊕_{i≥0} Hⁱ(Pⁿ, IC_{Pⁿ}) is a summand of H, and this has dimension n + 1. (Note that IC_{Pⁿ} is a shift of a constant sheaf since Pⁿ is smooth.)

Let μ be a dominant coweight. The following are equivalent:

- (a) μ is central.
- (b) t^{μ} normalizes L^+G inside of LG.
- (c) t^{μ} is fixed by L^+G .
- (d) Gr_{μ} is zero-dimensional.
- (e) $H^*(IC_{\mu})$ is one-dimensional.

If μ and λ are central dominant coweights then a simple computation shows that $IC_{\mu} \star IC_{\lambda} \cong IC_{\mu+\lambda}$. (We'll also deduce this from a more general result below.)

Sat_G as a rigid tensor category

Proposition

 Sat_G is a rigid tensor category and H^* is a fiber functor.

Proof

- We know that Sat_G is a symmetric tensor category and that H^{*} is a tensor functor.
- H^* is automatically exact since Sat_G is semisimple.
- By the lemma, H*(IC_µ) is non-zero. Since Sat_G is semisimple, this implies that H* is faithful.
- To show Sat_G is rigid, it suffices (by Deligne–Milne) to show that if H^{*}(IC_μ) is one-dimensional then IC_μ is invertible. If H^{*}(IC_μ) is one-dimensional then μ is central, and IC_μ ★ IC_{-μ} ≃ IC₀ = 1 (by previous slide).

Applying the main theorem of Tannakian duality, we find:

Corollary

There is an affine group scheme $\Gamma/\overline{\mathbf{Q}}_{\ell}$ such that Sat_{G} is equivalent to $\operatorname{Rep}(\Gamma)$.

This equivalence is one of $\overline{\mathbf{Q}}_{\ell}$ -linear symmetric tensor categories, and respects the fiber functors.

To prove the geometric Satake equivalence, we now simply need to identify Γ as the Langlands dual of *G*.

A lemma on convolutions

Lemma

Let λ and μ be dominant coweights. Then $IC_{\lambda} \star IC_{\mu}$ contains $IC_{\lambda+\mu}$ as a summand.

Proof

• Consider the diagram

$$\operatorname{Gr} \times \operatorname{Gr} \overset{p}{\longleftarrow} \operatorname{L} \mathcal{G} \times \operatorname{Gr} \overset{q}{\longrightarrow} \operatorname{L} \mathcal{G} \times \operatorname{L}^{+} \mathcal{G} \operatorname{Gr} \overset{m}{\longrightarrow} \operatorname{Gr}$$

- Note that LG ×^{L+G} Gr = Gr ×̃Gr is the convolution Grassmannian.
- Let $X = \operatorname{Gr}_{\leq \lambda} \tilde{\times} \operatorname{Gr}_{\leq \mu}$ be the closure in $\operatorname{Gr} \tilde{\times} \operatorname{Gr}$ of the set of points of the form (gt^{λ}, ht^{μ}) with $g, h \in L^+G$.

A lemma on convolutions (cont)

Proof

- We have $p^{-1}(\operatorname{Gr}_{\leq \lambda} \times \operatorname{Gr}_{\leq \mu}) = q^{-1}(X).$
- It follows that $p^*(\mathrm{IC}_\lambda \boxtimes \mathrm{IC}_\mu) = q^*(\mathrm{IC}_X).$
- Thus, by definition, $\mathrm{IC}_\lambda \star \mathrm{IC}_\mu = m_*(\mathrm{IC}_X).$
- Key observation: *m* maps X birationally to Gr_{≤λ+μ}. (This is related to how multiplication works in the Hecke algebra.)
- It follows that $IC_{\lambda+\mu}$ is a summand of $m_*(IC_X)$. (This uses a decomposition theorem argument similar to the previous one.)

Remark

If λ and μ are central then $H^*(IC_{\lambda} \star IC_{\mu}) = H^*(IC_{\lambda}) \otimes H^*(IC_{\mu})$ is one-dimensional, so $IC_{\lambda} \star IC_{\mu} = IC_{\nu}$ for some central ν ; by the lemma, we must have $\nu = \lambda + \mu$.

First properties of Γ

Proposition

 Γ is of finite type, connected, and reductive.

Proof

- By the lemma, finitely many IC_μ's generated Sat_G as a tensor category (e.g., those with μ a fundamental coweight), which implies that Γ is finite type.
- The lemma also shows there is no tensor subcategory of Sat_G containing direct sums of only finitely many IC_{μ} 's. Thus Γ is connected.
- Finally, since Sat_G is semisimple, Γ is reductive.

- [DM] P. Deligne and J.S. Milne. Tannakian Categories. https://www.jmilne.org/math/xnotes/tc.pdf
- [R] T. Richarz. A new approach to the geometric Satake equivalence. arXiv:1207.5314
- [Z] X. Zhu. An introduction to affine Grassmannians and the geometric Satake equivalence. arXiv:1603.05593